Course Outline for NAVI 202

DRONE AERIAL SURVEY, PHOTOGRAPHY AND VIDEOGRAPHY

Effective: Fall 2022

I. CATALOG DESCRIPTION:

NAVI 202 — Noncredit

This course is an introduction to using drones and Unoccupied Aerial Systems (UAVs) to capture and process a wide array of remote sensing data and digital imagery. It will cover pre-flight planning, in-flight choreography, and post processing stages. An emphasis is developing post-processing skills for commercial applications with exposure to the craft of report writing, cartography, and desktop stills/video editing. This is a creative starting point to using drones in multiple disciplines and careers.

Prerequisite

PHTO 58 - Introduction to Videography

Strongly Recommended

NAVI 201 - Orientation to Drones and Unoccupied Aerial Systems (UAVs)

GEOG 15 - Introduction to GIS

PHTO 56 - Introduction to Digital Photography

Grading Methods:

Pass/No Pass

Discipline:

• Aviation

Noncredit Category

J - Workforce Preparation

| MIN | Total Noncredit Hours: | 27.00 |

II. PREREQUISITE AND/OR ADVISORY SKILLS:

Before entering the course a student should be able to:

A. PHTO58

1. Identify essential roles, phases, and tools for editing a video project
2. Organize, prioritize, and plan sequences of tasks related to video editing project
3. Use a major video editing program to produce completed compositions combining video, sound, and titles
4. Assemble video and sound clips based on an edit-decision list (EDL)
5. Apply effective communication skills in order to work creatively on a small project team
6. Define major ethical and aesthetic issues in post production business today
7. Assemble sound, graphics, and typography into a video composition

Before entering this course, it is strongly recommended that the student should be able to:

A. NAVI201

1. Evaluate the legal (local, state, and federal) and ethical frameworks in order to safely operate common Unoccupied Aerial Systems (UAS), more commonly referred to as drones.
2. Describe the varied uses of an Unoccupied Aerial System (UAS) in multiple disciplines and careers.

B. GEOG15

1. Define Geographic Information Systems (GIS)
2. Identify and evaluate GIS data sources and the importance of metadata.
3. Identify, compare and contrast vector and raster GIS.
4. Evaluate the capabilities of various GIS software programs
5. Apply cartographic principles of scale, resolution, projection and data management to a problem of a geographic nature
6. Apply spatial analysis functions on a GIS to solve a Geospatial problem

C. PHTO56

1. Capture digital photographic image and make simple imaging corrections using imaging software
2. Use the vocabulary and terminology of digital imaging and photography
3. Utilize techniques used in photography to control digital image levels, contrast, hue and saturation, composition, lens flare, light, motion, gray scale and color balance
4. Employ digital imaging tools
5. Demonstrate selection techniques for minor adjustments and alterations of photographic images
6. Describe different methods for digital capture including how and when use of digital camera is best, its advantages and limitations
7. Demonstrate digital printing and image uploading for the web
8. Use service bureaus, photography store and custom services, and photo web processing sites
9. Transfer large digital photographic files within a local area network and among various removable storage media
10. Analyze the effect of digitally manipulated images on selected segments of society with emphasis on student understanding of media ethics

III. MEASURABLE OBJECTIVES:

Upon completion of this course, the student should be able to:

A. Evaluate the legal (local, state, and federal) and ethical frameworks in order to safely operate common Unoccupied Aerial Systems (UAS), more commonly referred to as drones.
B. Create and produce an original professional presentation to tell a story using aerial photography, Videography, and/or other remote sensing data set.
C. Describe the varied uses of an Unoccupied Aerial System (UAS) in multiple disciplines and careers.

IV. CONTENT:

I. UAS Uses
 A. UAS Uses
 B. Real Estate
 C. Agriculture
 D. Building Inspection
 E. Public Safety
 a. Police
 b. Fire
 c. Search and rescue
 F. Surveying/Mapping
 G. Wildlife management
 H. Forest management
 I. Video production
 J. Photography
 K. Architecture
 L. Journalism
 M. Equipment maintenance

II. Mechanics of Flight

III. UAS Equipment and Technology
 A. Size
 B. Type
 C. Features
 a. GPS
 b. Cameras
 c. Controllers
 D. Performance
 a. Speed
 b. Battery Life
 E. Camera and Video
 F. Remote Sensing

IV. Safety and Ethics
 A. Personal Safety
 B. Property Safety
 C. Privacy Concerns

V. UAS Laws and Regulations
 A. FAA Regulations
 a. Airspace Issues
 b. Hobby vs. Commercial usage
 c. Licensing
 B. FAA Certification
 C. Local Law
 D. State Laws

VI. Flying
 A. Flight planning
 B. Hovering and Tilting
 C. Flight Patterns
 a. Tracking
 b. Following
 c. Waypoints
 D. Flight Logging
 E. Aircraft Maintenance

VII. Cinematography
 A. Camera Settings
 B. Depth of Field
 C. Stills
 D. Panoramas
 E. Time-Lapse

VIII. Videography
 A. Video Settings
 B. White Balance
 C. Gimbals

IX. Choreography & Story Boarding Techniques
 A. Framing
 B. Static versus Dynamic Video

X. Drone Land Survey
 A. Pre-flight planning
 B. Resolution
 C. Photogrammetry
 D. 3D Surface relief
E. Point Cloud Models
F. DEMs and Contour Maps
X. Infrastructure Inspection
XII. Post-Processing Software Options
XIII. Image Editing
XIV. Report Writing and Deliverables
XV. Professional Presentations

V. LAB CONTENT:
I. Project Planning
II. Cinematography
A. Camera Settings
B. Stills
C. Panoramas
III. Videography
A. Video Settings
IV. Choreography & Story Boarding Techniques
V. Drone Land Survey
A. Pre-flight planning
B. Resolution
C. Photogrammetry
D. 3D Surface relief
E. Point Cloud Models
F. DEMs and Contour Maps
VI. Infrastructure Inspection
VII. Post-Processing Software Options
VIII. Image Editing
IX. Report Writing and Deliverables
X. Professional Presentations

VI. METHODS OF INSTRUCTION:
A. Critique - Instructor will review various professional projects and critique each based on a standardized methodology.
B. Directed Study - Instructor will help each student to develop individualized proposals for a professional contract.
C. Projects - Instructor will mentor cinematographic or survey based project that involve the students to process a data set from start to finish for a potential client.
D. Student Presentations - Instructor will mentor students presentation techniques to create a summary of a project including a review of methodology, analysis, and budgetary concerns.

VII. TYPICAL ASSIGNMENTS:
A. Ten to twenty pages of reading per week
B. Short essay critiques
C. Weekly forum posts on class-related topics
D. Weekly practice and graded quizzes.
E. Group and Individual projects
F. Final project presentations
G. Written paper discussing job possibilities in this developing industry

VIII. EVALUATION:
Methods/Frequency
A. Exams/Tests
 Once
B. Quizzes
 Weekly
C. Projects
 Once
D. Group Projects
 Once

IX. TYPICAL TEXTS:
2. Lightworks LWKS Software Ltd. (2021.1).

X. OTHER MATERIALS REQUIRED OF STUDENTS: