COURSE MATERIALS

 - The bookstore will be selling LPC custom textbooks; the only difference between this textbook and the national 3rd Edition Rockswold textbook is that following sections have been removed, as the material is not listed in the course outline of record: Ch 9.3, Ch 14. This allows students to purchase a textbook at a reduced price and skip next edition updates unless desired. Your students may use a national textbook or the LPC custom textbook.
- **Software (Optional):** MyMathLab™
 - When purchased new, the textbook comes bundled with a MyMathLab™ access code.
 - Instructors adopting MyMathLab™ may make purchase of the textbook optional.
 - Students who wish to use MyMathLab™ to supplement learning in a course not requiring it can use our generic course. Please provide those interested students with the following Course ID: course85145
- **Calculator:** At the instructor’s option, students may be allowed use of simple scientific calculators in Math 65A. Graphing calculators may not be required and use of such calculators on tests is discouraged.

COURSE CONTENT

Cover all of Chapters 1 – 4.

- **Suggestions regarding content:**
 - **Chapter 1:** This chapter is largely a review of material from Pre-Algebra and can be covered fairly quickly. It is recommended that you spend no more than 5 days on this chapter.
- Materials related to this course can be found on the Mathematics Department Blackboard website. To gain access to this site, please contact the course coordinator. These materials include:
 - Course Outline of Record
 - A table summarizing teacher resources for the course (e.g., labs, group activities)
 - Core lab assignments
 - Sample course calendar

COURSE OUTLINE OF RECORD

- All course outlines can be found on the LPC website under Programs/Courses:
 - http://www.laspositascollege.edu/courseOutlines/MATH/index.php
- Your teaching contract requires that you cover all of the material listed in the Course Outline of Record.
- The course outline is our contract with our transfer institutions, with each other, and with our students about what the course will include.
- Any instructor who does not carefully follow the course outline risks the possibility of not being allowed to teach that course again at LPC.

COURSE SYLLABUS:
Your syllabus for this course should include the following information:

- Textbook and software requirements
- Measurable Objectives (see below)
- LPC repeatability policy (see below)
- TBA Lab Hour Requirements/Policies (see below)
- Optional: Student Learning Outcomes (see below)

MEASURABLE OBJECTIVES (include in syllabus):

Upon completion of this course, the student should be able to:

A. perform operations with real numbers;
B. identify properties of real numbers;
C. simplify algebraic expressions;
D. translate a verbal statement into an algebraic expression;
E. solve linear equations in one variable;
F. solve a formula for a specified variable;
G. solve and graph a linear inequality in one variable and express the solution using correct interval or set notation;
H. develop and graph linear equations in two variables using various methods;
I. apply concepts of slopes and rates of change;
J. develop and describe basic linear models;
K. solve systems of linear equations by graphing;
L. solve systems of linear equations by either the elimination or the substitution methods;
M. solve linear inequalities in two variables and systems of linear inequalities in two variables;
N. apply algebraic methods to represent, analyze and solve applied problems involving linear equations.

TBA LAB HOUR

- There is a required TBA (to be arranged) lab hour attached to this course. This is an *instructional* (50 minute) hour.
- Compliance with all TBA lab hour requirements and policies is essential, as audits by the State Chancellor’s office are conducted on a regular basis and schools found not to be in compliance face stiff monetary penalties.

Policies and Requirements:

- Students complete their lab hour requirement by logging one hour in the Open Math Lab (Integrated Learning Center) each week and working on TBA lab hour assignments.
- Students must log eighteen (50 minute) lab hours. **NOTE:** This is equivalent to fifteen 60-minute hours. Since 65A is a late-start course that meets for 15 weeks, your students should log one full hour per week in order to satisfy their lab hour requirement.
- Students must log at least one lab hour prior to the census date (check Class-Web for the late-start census date).
- **IMPORTANT:** students who do not log at least one hour prior to the census date cannot be claimed for apportionment by the college. For this reason, **any student who does not meet this requirement must be dropped NGR.**

- **Each student must complete a TBA Lab Hour contract.** The contract will be available for download from the Mathematics Department website.
 - Contracts should be completed by the end of the first week of instruction.
 - Instructors keep the contracts until the end of the semester, at which time they should be given to the Division office for archiving.
o Lab assignments cannot be homework
o Lab assignments must constitute a portion of the students’ grade for the course.

o **More about lab assignments:**
 - We recommend a minimum of eight lab assignments over the semester.
 - Students may be given more than one week to complete an assignment.
 - Core lab assignments for Math 65 are available on the Mathematics Department Blackboard website.
 - We encourage sharing of lab assignments and collaboration with other instructors in the creation of lab assignments.

- Encourage your students to use the Open Math Lab as a resource for studying and getting help.

REPEATABILITY

There is a new state-mandated Repetition Policy for the Chabot-Las Positas District that is retroactive to the date a student first started taking courses within the district (at either Chabot or Las Positas).

What does this mean for students?
- Within the district, a student is allowed to attempt a course (or courses equivalent to it) at total of THREE TIMES. If the first attempt is unsuccessful (W, D, F, or NC (No Credit)), a student has two additional attempts to complete the course with a passing grade (C, B, A or Cr (Credit)).
- After three attempts to pass a course (or equivalent course), students will be blocked from registering for that course (or its equivalents) again at either Las Positas or Chabot College unless a special circumstance petition is approved, as described in the Administrative Rules and Procedures.
- More information can be found at the following link: http://www.laspositascollege.edu/math/documents/repeatingpolicy_spr2013.pdf

OPTIONAL Inclusion into Syllabus:

STUDENT LEARNING OUTCOMES

- Student Learning Outcomes, SLOs, are learning proficiencies the Mathematics Department has determined students should be able to demonstrate at the end of the course. Course-level SLOs for Math 65A connect with our program-level SLOs of communication, multiple representations, problem-solving, and modeling.
- Although assessment of SLOs is voluntary for adjunct faculty, we encourage all instructors to participate in the SLO assessment process as collection of SLO data is essential for program review and compliance with accreditation standards.
- **SLO assessment process:**
 - All SLO’s should be assessed on the final exam, one question per SLO (each instructor writes their own assessment).
 - Assessments should reflect the appropriate level of rigor for the course and must specifically address the SLO being assessed.
 - Results should be entered into eLumen, the SLO data base, either aggregated for the class, or by individual student. For help with eLumen, contact the coordinator for this course.

- The following course-level SLOs should be listed in your course syllabus.

<table>
<thead>
<tr>
<th>Program-Level SLO</th>
<th>Course-Level SLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Representations</td>
<td>Construct multiple representations of a linear equation (numerical, graphical, or symbolic).</td>
</tr>
<tr>
<td>Modeling</td>
<td>Construct a linear model based on a given situation.</td>
</tr>
</tbody>
</table>